Descripción físico-química teórica y computacional de los complejos enzima-ligando de la proteína bromelina reportada mediante difracción de Rayos X

Palabras clave: Bromelina, cristalografía, enzima-ligando, físico-química, proteína, Rayos X

Resumen

El estudio teórico computacional aborda la descripción de los complejos enzima-ligando obtenidos mediante el método de difracción de Rayos X. El propósito de este estudio es analizar a la enzima bromelina aplicando de la química computacional, a través de cribados virtuales consecutivos en la plataforma del RCSB PDB hasta llegar al cristal de mejor calidad reportada. La descripción física de la obtención de coordenadas tridimensionales a través del modelo de difracción de Rayos X, y la aplicación de la química teórica y computacional para describir la proteína cuaternaria reportada con sus cadenas, ligandos asociados, y moléculas de agua estructural. Se determinó que el complejo cristalino ID PDB: 6YCB es el que posee la mejor resolución, comparándola con respecto a la proteína en criogenia que minimiza sus vibraciones estructurales.

Descargas

La descarga de datos todavía no está disponible.

Citas

Agrawal, P., Nikhade, P., Patel, A., Mankar, N., & Sedani, S. (2022). Bromelain: A Potent Phytomedicine. Cureus. https://doi.org/10.7759/cureus.27876

Ali, A., Chiang, Y. W., & Santos, R. M. (2022). X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals, 12(2), 205. https://doi.org/10.3390/min12020205

Azarkan, M., Maquoi, E., Delbrassine, F., Herman, R., M’Rabet, N., Calvo Esposito, R., Charlier, P., & Kerff, F. (2020). Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Scientific Reports, 10(1), 19570. https://doi.org/10.1038/s41598-020-76172-5

Boufissiou, A., Abdalla, M., Sharaf, M., Al-Resayes, S. I., Imededdine, K., Alam, M., Yagi, S., Azam, M., & Yousfi, M. (2022). In-silico investigation of phenolic compounds from leaves of Phillyrea angustifolia L. as a potential inhibitor against the SARS-CoV-2 main protease (Mpro PDB ID:5R83) using a virtual screening method. Journal of Saudi Chemical Society, 26(3), 101473. https://doi.org/10.1016/j.jscs.2022.101473

Chen, P. Y.-T., DeColli, A. A., Freel Meyers, C. L., & Drennan, C. L. (2019). X-ray crystallography–based structural elucidation of enzyme-bound intermediates along the 1-deoxy-d-xylulose 5-phosphate synthase reaction coordinate. Journal of Biological Chemistry, 294(33), 12405–12414. https://doi.org/10.1074/jbc.RA119.009321

Chojnowski, G., Simpkin, A. J., Leonardo, D. A., Seifert-Davila, W., Vivas-Ruiz, D. E., Keegan, R. M., & Rigden, D. J. (2022). findMySequence: a neural-network-based approach for identification of unknown proteins in X-ray crystallography and cryo-EM. IUCrJ, 9(1), 86–97. https://doi.org/10.1107/S2052252521011088

de Lencastre Novaes, L. C., Jozala, A. F., Lopes, A. M., de Carvalho Santos-Ebinuma, V., Mazzola, P. G., & Pessoa Junior, A. (2016). Stability, purification, and applications of bromelain: A review. Biotechnology Progress, 32(1), 5–13. https://doi.org/10.1002/btpr.2190

Duarte, J. M., Dutta, S., Goodsell, D. S., & Burley, S. K. (2022). Exploring protein symmetry at the RCSB Protein Data Bank. Emerging Topics in Life Sciences, 6(3), 231–243. https://doi.org/10.1042/ETLS20210267

Greisman, J. B., Willmore, L., Yeh, C. Y., Giordanetto, F., Shahamadtar, S., Nisonoff, H., Maragakis, P., & Shaw, D. E. (2023). Discovery and Validation of the Binding Poses of Allosteric Fragment Hits to Protein Tyrosine Phosphatase 1b: From Molecular Dynamics Simulations to X-ray Crystallography. Journal of Chemical Information and Modeling, 63(9), 2644–2650. https://doi.org/10.1021/acs.jcim.3c00236

Kamphuis, I. G., Kalk, K. H., Swarte, M. B. A., & Drenth, J. (1984). Structure of papain refined at 1.65 Å resolution. Journal of Molecular Biology, 179(2), 233–256. https://doi.org/10.1016/0022-2836(84)90467-4

Kavitha G., Muthulakshmi M., & Latha M. (2022). Image Segmentation Using Contour Models. In Research Anthology on Improving Medical Imaging Techniques for Analysis and Intervention (pp. 892–915). IGI Global. https://doi.org/10.4018/978-1-6684-7544-7.ch045

Krishna, D. N. G., & Philip, J. (2022). Review on surface-characterization applications of X-ray photoelectron spectroscopy (XPS): Recent developments and challenges. Applied Surface Science Advances, 12, 100332. https://doi.org/10.1016/j.apsadv.2022.100332

Leszczynski, Jerzy., & Shukla, M. K. (2010). Practical Aspects of Computational Chemistry (J. Leszczynski & M. K. Shukla, Eds.). Springer Netherlands. https://doi.org/10.1007/978-90-481-2687-3

Liu, Z., Sharma, H., Park, J.-S., Kenesei, P., Miceli, A., Almer, J., Kettimuthu, R., & Foster, I. (2022). BraggNN: fast X-ray Bragg peak analysis using deep learning. IUCrJ, 9(1), 104–113. https://doi.org/10.1107/S2052252521011258

Lodh, A., Thool, K., & Samajdar, I. (2022). X-ray Diffraction for the Determination of Residual Stress of Crystalline Material: An Overview. Transactions of the Indian Institute of Metals, 75(4), 983–995. https://doi.org/10.1007/s12666-022-02540-6

Lovesey, S. W., & van der Laan, G. (2022). Ligand-metal bonding effects in resonance enhanced x-ray Bragg diffraction. Journal of Physics: Condensed Matter, 34(47), 475601. https://doi.org/10.1088/1361-648X/ac7e11

McArdle, S., Endo, S., Aspuru-Guzik, A., Benjamin, S. C., & Yuan, X. (2020). Quantum computational chemistry. Reviews of Modern Physics, 92(1), 015003. https://doi.org/10.1103/RevModPhys.92.015003

Nam, K. H. (2022). Serial X-ray Crystallography. Crystals, 12(1), 99. https://doi.org/10.3390/cryst12010099

Pavan, R., Jain, S., Shraddha, & Kumar, A. (2012). Properties and Therapeutic Application of Bromelain: A Review. Biotechnology Research International, 2012, 1–6. https://doi.org/10.1155/2012/976203

Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera -- A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084

Pezzani, R., Jiménez-Garcia, M., Capó, X., Sönmez Gürer, E., Sharopov, F., Rachel, T. Y. L., Ntieche Woutouoba, D., Rescigno, A., Peddio, S., Zucca, P., Tsouh Fokou, P. V., Martorell, M., Gulsunoglu-Konuskan, Z., Ydyrys, A., Bekzat, T., Gulmira, T., Hano, C., Sharifi-Rad, J., & Calina, D. (2023). Anticancer properties of bromelain: State-of-the-art and recent trends. Frontiers in Oncology, 12. https://doi.org/10.3389/fonc.2022.1068778

Polik, W. F., & Schmidt, J. R. (2022). WebMO: Web‐based computational chemistry calculations in education and research. WIREs Computational Molecular Science, 12(1). https://doi.org/10.1002/wcms.1554

Quenot, L., Bohic, S., & Brun, E. (2022). X-ray Phase Contrast Imaging from Synchrotron to Conventional Sources: A Review of the Existing Techniques for Biological Applications. Applied Sciences, 12(19), 9539. https://doi.org/10.3390/app12199539

RCSB Protein Data Bank. (2022). RCSB Protein Data Bank - Query: “Bromelain.” https://www.rcsb.org/

Santana-Romo, F., Lagos, C. F., Duarte, Y., Castillo, F., Moglie, Y., Maestro, M. A., Charbe, N., & Zacconi, F. C. (2020). Innovative three-step microwave-promoted synthesis of N-propargyltetrahydroquinoline and 1,2,3-triazole derivatives as a potential factor Xa (FXA) inhibitors: Drug design, synthesis, and biological evaluation. Molecules, 25(3). https://doi.org/10.3390/molecules25030491

Scardino, V., Di Filippo, J. I., & Cavasotto, C. N. (2023). How good are AlphaFold models for docking-based virtual screening? IScience, 26(1), 105920. https://doi.org/10.1016/j.isci.2022.105920

Sharma, G., & Vimal, A. (2023). Bromelain: An Enzyme Expanding its Horizon from Food to Pharmaceutical Industry. Current Pharmaceutical Biotechnology, 24(14), 1715–1726. https://doi.org/10.2174/1389201024666230331115338

Vélasquez-González, O. E., & Amézquita-Morataya, L. (2022). Cristalogénesis biológica y cristalografía en la elucidación de la estructura tridimensional de las proteínas. Revisión narrativa. Ciencia, Tecnologí¬a y Salud, 9(2), 199–214. https://doi.org/10.36829/63CTS.v9i2.1032

Wang, J., Miller, D. D., & Li, W. (2022). Molecular interactions at the colchicine binding site in tubulin: An X-ray crystallography perspective. Drug Discovery Today, 27(3), 759–776. https://doi.org/10.1016/j.drudis.2021.12.001

Xie, J.-J., & Liu, H.-W. (2023). Analytical study of Bragg resonances by a finite periodic array of congruent trapezoidal bars or trenches on a sloping seabed. Applied Mathematical Modelling, 119, 717–735. https://doi.org/10.1016/j.apm.2023.03.010

Xie, Y., Liu, H., Feng, H., Xie, F., Fan, Z., Wang, H., Chen, R., Liu, Q., Yi, D., & Liang, E. (2023). Variably polarized X-ray sources for LPD calibration. Experimental Astronomy. https://doi.org/10.1007/s10686-023-09905-9

Yang, D., Phillips, N. W., Song, K., Barker, C., Harder, R. J., Cha, W., Liu, W., & Hofmann, F. (2022). In situ Bragg coherent X-ray diffraction imaging of corrosion in a Co-Fe alloy microcrystal. CrystEngComm, 24(7), 1334–1343. https://doi.org/10.1039/D1CE01586A

Publicado
2024-01-30
Cómo citar
Santana Romo, F., Morales Ortíz, M., Carreño Otero, A., Vizuete Fiallos, G., & Peñaherrera Veintimilla, J. (2024). Descripción físico-química teórica y computacional de los complejos enzima-ligando de la proteína bromelina reportada mediante difracción de Rayos X. Revista De Investigación Talentos, 11(1), 1-14. https://doi.org/10.33789/talentos.11.1.193